Structures of a new type of yellow pigments, falconensones A and B, from E mericella falconensis

N obuko \mathbf{O} gasawara, Reiko M izuno and Ken-ichi Kawai
Faculty of Pharmaceutical Sciences, H oshi U niversity, E bara 2-4-41, Shinagawa-ku, Tokyo 142, J apan

Abstract

Two new yellow pigments designated falconensones A 1 and B 2 have been isolated from the mycelium of E mericella falconensis and/or E. fruticulosa along with new azaphilone derivatives, falconensins A-H , and hopane-type triterpenes, zeorin, hopane-7阝,22-diol, and hopane-6a,7ק,22-triol. The structures of 1 and 2 have been determined by spectroscopic investigations and an X-ray analysis of the p-bromophenylhydrazone of 1 acetone solvate. C ompounds 1 and 2 have a novel carbon skeleton: namely, they are cyclopent-2-enone derivatives connected to an extensively conjugated methyl ketone at C-3.

Recently weisolated seven new hydrogenated azaphilones, falconensins A-G, ${ }^{1,2}$ a new azaphilone, falconensin $H,{ }^{3}$ and three hopane-type triterpenes, zeorin (hopane-6a,22-diol), hopane$7 \beta, 22$-diol and hopane- $6 \alpha, 7 \beta, 22$-triol, ${ }^{2}$ from the mycelial extract of ascomycetous fungi, Emericella falconensis Horie, M iyaji, N ishimura and U dagawa, strain NHL 2999 (=ATCC 76117) ${ }^{4}$ and E. fruticulosa (Raper and Fennell) M alloch and Cain, strain IF 0 30841. Wenow report the isolation of two new cyclopentenone pigments from the same source which we name falconensones A 1 and B 2.

Falconensone A 1, $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~m} / \mathrm{z} \mathrm{310} ,\mathrm{was} \mathrm{isolated} \mathrm{by} \mathrm{chro-}$ matography as an orange coloured solid. The ${ }^{13} \mathrm{C}$ N M R spectrum of 1 (Table 1) showed the presence of five methyl groups, one methylene, one methine, six double bonds ($12 \mathrm{sp}^{2}$ carbons), and two carbonyl groups, whilst the ${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} showed the presence of five methyl groups $[\delta 1.21$ (d), 1.80, 1.93, 2.12 and 2.36], one methylene [$\delta 2.47$ (br d) and 3.16 (dd)], one methine [$\delta 2.45$ (br qd)], and eight olefinic protons

[$\delta 6.50-6.54(5 \mathrm{H}), 6.55-6.62(2 \mathrm{H})$ and $7.10(1 \mathrm{H}, \mathrm{br} \mathrm{d})]$. On the basis of this evidence, together with its molecular formula, compound $\mathbf{1}$ was assigned a monocyclic structure. The partial structure of the fragment $\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}$ was identified by proton decoupling of the signals at $\delta 1.13$ ($3 \mathrm{H}, \mathrm{d}$), 2.37 ($1 \mathrm{H}, \mathrm{qdd}$), 2.57 ($1 \mathrm{H}, \mathrm{br} \mathrm{d}$) and $3.21(1 \mathrm{H}, \mathrm{br} \mathrm{dd})$, measured in ($\left.\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ (Table 1). Hydrogenation of 1 in the presence of Pd-charcoal (10\%) gave decahydrofal conensone A $3, \mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{2}$, still possessing one double bond. This double bond was thought to be tetrasubstituted, since the signals associated with it were not observed below $\delta 3$ in the ${ }^{1} \mathrm{H}$ NMR spectrum. The fragment $\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}$ was identified by proton decoupling of the signals at $\delta 1.09(3 \mathrm{H}, \mathrm{d}), 2.30(1 \mathrm{H}, \mathrm{br}$ qd), $2.02(1 \mathrm{H}, \mathrm{br}$ d) and 2.63 (1 H , br dd). The maximum at 239 and 301 nm in the U V spectrum of 3 showed the presence of an α, β-unsaturated ketone. From a detailed analysis of the ${ }^{11} \mathrm{H}$-detected heteronuclear multiplequantum coherence via direct coupling (HM QC) and heteronuclear multiple bond connectivity by 2D multiple quantum NM R (H M BC) spectra of $\mathbf{3}$ (Fig. 2), it was confirmed
decahydrofalconensone A had a 2,4-dimethyl-3-oxocyclopent1 -enyl residue and a methyl ketone. These results suggested the presence of fragments \mathbf{A} and \mathbf{B} in the molecule of $\mathbf{3}$. The UV

maximum at 239 nm was reasonable for the presence of the above five-membered unsaturated ketone in 3.
Since seven olefinic protons still severely overlapped in the ${ }^{1} \mathrm{H}$ NM R measured made in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$, the ${ }^{1} \mathrm{H} N M R$ spectrum of 1 was measured in $\mathrm{C}_{6} \mathrm{D}_{6}$. A direct correlation between the carbons and the protons was confirmed from the analysis of the HM QC spectrum of $\mathbf{1}$. The presence of fragments \mathbf{A} and \mathbf{B} was al so established as being present in $\mathbf{1}$ from the result of $\mathbf{3}$ and by the analysis of the H M BC spectrum (Fig. 1). From the remaining unassigned signals of $\mathbf{1}, \mathrm{six} \mathrm{sp}^{2}$ carbons and six protons, it is clear that fragments \mathbf{A} and \mathbf{B} are connected by three double bonds ($\mathrm{CH}=\mathrm{CHCH}=\mathrm{CHCH}=\mathrm{CH}$). The structure of falconensone A was, therefore, assumed to be as shown in 1.

In order to confirm the above structure and the stereochemistry of the double bonds of falconensone A 1, an X-ray crystallographic analysis of a derivative of 1 was attempted. Falconensone A 1 was treated with p-bromophenylhydrazinium chloride to afford falconensone p-bromophenylhydrazone 4. Crystals of 4 acetone solvate were grown in acetone as dark red prisms, which were suitable for X-ray analysis. The absolute crystal structure of falconensone A p-bromophenylhydrazone 4 acetone solvate was determined, using Bijoet's inequality relationship in the anomalous dispersion for bromine atoms (see Fig. 3). Two molecules of 4 and acetone were present in an asymmetric unit. Each molecule of 4 and acetone were mainly packed by hydrogen bonding between the carbonyl oxygen and NH [N (2)-H \cdots (4): $3.10 \AA, N(4)-H \cdots O(2): 3.10 \AA]$. The bond lengths and angles are not significantly different from the expected values. ${ }^{5}$ The absolute structure of falconensone A was consequently established as (R)-($3 \mathrm{E}, 5 \mathrm{E}, 7 \mathrm{E}, 9 \mathrm{E}, 11 \mathrm{E}$)-3,11-

1

2

Fig. 1 Correlations in the H M BC spectrum of falconensones A 1 and B 2. A rrow indicates the correlation from carbon $\left(C_{A}\right)$ to proton $\left(H_{B}\right)$: $\mathrm{C}_{\mathrm{A}} \longrightarrow \mathrm{H}_{\mathrm{B}}$.

Fig. 2 Correlations in the HMBC spectrum of decahydrofalconensone A 3. A rrow indicates the correlation from carbon (C_{A}) to proton $\left(\mathrm{H}_{\mathrm{B}}\right): \mathrm{C}_{\mathrm{A}} \longrightarrow \mathrm{H}_{\mathrm{B}}$.
dimethyl-12-(2,4-dimethyl-3-oxocyclopent-1-enyl)dodeca-3,5,7, 9,11-pentaen-2-one The absolute configuration of the methyl group in the cyclopentenone ring is R. The assignments of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} N M R$ signals of 1 are summarized in Table 1.

Falconensone B 2, $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2}, \mathrm{~m} / \mathrm{z} 296(\mathrm{M}+$), is closely related to 1 . In this compound, the ${ }^{1} \mathrm{H}$ NMR signals assigned to $\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}$ are replaced by two new signals at $\delta 2.39(2 \mathrm{H})$ and $2.82(2 \mathrm{H})$ indicative of the fragment $\mathrm{CH}_{2} \mathrm{CH}_{2}$. This result assumed that $\mathbf{2}$ is a 4^{\prime}-nor-methyl derivative of $\mathbf{1}$. The analyses of the HM QC and HMBC (Fig.1) spectra of 2 led us to confirm the structure of falconensone B as shown in 2. The stereochemistry of the double bonds in $\mathbf{2}$ were not determined, but it is presumed that all, except that in the cyclopentenone ring, would have an E-configuration, taking into account the similarity of the chemical shifts of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals (Table 1).

Falconensones A 1 and B 2 have the novel cyclopent-2-en-1one skeleton with the methyl ketone residue connected through a conjugated pentaene moiety. It is likely that these compounds would be biosynthesized from the nonaketide, derived through the acetate-malonate pathway, followed by the methylation at the three positions C-3, C-11 and C-4'. The biological activity of falconensones A 1 and B 2 will be investigated in the near future

Experimental

M ps were determined on a Yanagimoto micro-melting point apparatus and are uncorrected. Optical rotations were measured with a JA SCO DIP-1000 spectrometer and are recorded as 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. M ass spectra (MS) were taken with a JEOL JM S-D -300 spectrometer. U V and IR spectra were recorded on a Hitachi U-3210 spectrophotometer and a JASCO IR-810 spectrophotometer, respectively. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were recorded on a JEOL Lambda-500 spectrometer at 500.00 and 126.65 M H z, respectively, using tetramethylsilane as an internal standard. Coupling patterns are indicated as follows: singlet $=\mathrm{s}$, doublet $=\mathrm{d}$, triplet $=\mathrm{t}$, quartet $=\mathrm{q}$, multiplet $=\mathrm{m}$ and broad $=b r$. J Values are in Hz. CD curves were determined on a

Fig. 3 Crystal structure of falconensone A p-bromophenylhydrazone 4 acetone solvate with thermal ellipsoids of 50% probability

JASCO J-600 spectropolarimeter. Column chromatography was performed using K ieselgel 60 (A rt. 7734; M erck). Low pressure liquid chromatography (LPLC) was performed on a Chemco Low-Prep 81-M -2 pump and a glass column (200×10 mm) packed with silica gel CQ-3 ($30-50 \mu \mathrm{~m}$; Wako) with theflow rate of $6 \mathrm{ml} \mathrm{min}^{-1}$. High-performance liquid chromatography (H PLC) was performed with a Senshu SSC - 3160 pump with the flow rate of $5 \mathrm{ml} \mathrm{min}^{-1}$ using a Senshu Pak PEGASIL Silica $60-5$ (10 i.d. $\times 250 \mathrm{~mm}$) pre-packed column, equipped with a Shimamura Y RU-883 RI-UV monitor. TLC was conducted on pre-coated K ieselgel $60 \mathrm{~F}_{254}$ plates (A rt. 5715; M erck). Spots on TLC were detected on the basis of their colouration and absorption under UV light.

I solation of metabolites from E mericella falconensis

E. falconensis, strain NHL 2999, was cultivated in Czapek medium supplemented with 0.2% yeast extract (30 I) using 120 Roux flasks at $25^{\circ} \mathrm{C}$ for 28 days. The dried mycelium was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and then evaporated in vacuo. The extract (36.2 g) obtained was dissolved in CHCl_{3} and the filtrate was concentrated by evaporation. The residue (30.4 g) was chromatographed on silica gel with CHCl_{3}-acetone ($60: 1$) after the elution with CHCl_{3} to give the $\mathbf{1}$ and $\mathbf{2}$ rich fraction (16.9 g). A fter the re-chromatography on silica gel of this fraction, two fractions were obtained: the first eluted with benzene-acetone ($15: 1$) and the second with benzene-acetone (10:1). The former fraction was further purified by the repeated LPLC with cyclohexane-acetone ($10: 1$) and benzene-EtOAc ($8: 1$) followed by the HPLC purification with the solvent system of hexane-acetone ($10: 1$) ($\mathrm{t}_{\mathrm{r}} 10 \mathrm{~min}$) to afford falconensone A 1 (303 mg), whereas the latter fraction was purified by the repeated LPLC with benzene-acetone ($15: 1$) and tolueneacetone (12:1), and then finally purified by HPLC with hexaneacetone ($10: 1$) ($\mathrm{t}_{\mathrm{r}} 14 \mathrm{~min}$) to afford falconensone B $2(3 \mathrm{mg})$.
Falconensone A 1: orange prisms, $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{2}$, $\mathrm{mp} 195-197^{\circ} \mathrm{C}$ (from acetone); $[a]_{0}^{20}+149$ (c 0.45, CHCl_{3}) (Found: $\mathrm{C}, 81.06 ; \mathrm{H}$, 8.41. Calc. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{2}$: C, 81.25; H, 8.44%); EI-M S m/z (\%) $310.1919\left(\mathrm{M}^{+}, 310.1931\right.$ for $\left.\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{2}, 100\right), 295\left[(\mathrm{M}-\mathrm{M} \mathrm{e})^{+}\right.$, 6], 267 [(M -Ac$\left.)^{+}, 13\right], 109\left[\left(\mathrm{C}_{7} \mathrm{H} 9 \mathrm{~g}^{2}\right)^{+}, 58\right]$ and $43\left[(\mathrm{Ac})^{+}, 45\right]$; CI-M S (isobutane) m/z (\%) 311 [(M + H) ${ }^{+}$, 100]; $\lambda_{\text {max }}(\mathrm{M} \mathrm{eOH}) /$ $\mathrm{nm}(\log \varepsilon) 249$ (4.09), 310 (4.13), 389 (4.79), 408 (4.87) and 431 (4.76); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1680$ and 1647 (conjugated $\mathrm{C}=0$) and 1587; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.21(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3), 1.80(3 \mathrm{H}, \mathrm{br} \mathrm{s})$,

Table $1{ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ N M R assignments for falconensones $\mathrm{A} \mathbf{1}$ and B 2

Position	$1^{\text {a }}$		$1^{\text {b }}$		$2^{\text {c }}$	
	$\delta_{\text {c }}$	$\delta_{\text {H }}$	$\delta_{\text {c }}$	δ_{H}	$\delta_{\text {c }}$	$\delta_{\text {H }}$
1 (Me)	25.33	2.07	26.09	2.31	25.60	2.29
2	197.47		198.98		199.23	
3	137.12		137.29		136.64	
3-M e	11.86	1.91	12.10	1.87	11.66	1.86
4	138.08	6.83	139.97	7.24	138.87	7.03
5	129.62	6.45	130.52	6.62-6.81	129.24	6.53-6.62
6	139.29	6.34	141.12	6.62-6.81	139.64	6.53-6.62
7	136.36	6.38	137.87	6.62-6.81	134.01	6.41-6.48
8	140.26	6.33	141.27	6.62-6.81	140.01	6.41-6.48
9	134.24	6.23	135.44	6.62-6.81	136.48	6.41-6.48
10	130.97	6.37	132.55	6.62-6.81	131.16	6.41-6.48
11	140.96		143.00		141.69	
$11-\mathrm{Me}$	14.45	1.78	15.21	2.15	14.64	2.05
12	128.48	6.31	128.51	6.62	127.49	6.41-6.48
1 '	160.72		162.75		164.00	
$2 '$	138.14		138.17		138.82	
2'-M e	9.23	1.80	9.51	1.73	8.92	1.73
3^{\prime}	209.45		210.68		208.97	
4^{\prime}	39.65	2.16	40.53	2.37	29.67	$\begin{aligned} & 2.82 \\ & 2.82 \end{aligned}$
4'-M e	16.82	1.11	17.37	1.13		
$5{ }^{\prime}$	38.80	2.04	39.68	2.57	34.30	2.39
		2.62		3.21		2.39

${ }^{\mathrm{a}} \mathrm{M}$ easured in $\mathrm{C}_{6} \mathrm{D}_{6} \cdot{ }^{\mathrm{b}} \mathrm{M}$ easured in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO} .{ }^{\mathrm{c}} \mathrm{M}$ easured in CDCl_{3}
$1.93(3 \mathrm{H}, \mathrm{br}$ s), $2.12(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.36(3 \mathrm{H}, \mathrm{s}), 2.45(1 \mathrm{H}, \mathrm{br} \mathrm{qd}, \mathrm{J}$ 7.3, 6.5), 2.47 ($1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 17.9$), 3.16 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.9$ and 6.5), 6.50-6.54 ($5 \mathrm{H}, \mathrm{m}$), 6.55-6.62 $(2 \mathrm{H}, \mathrm{m})$ and $7.10(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}$ 10.4); ${ }^{1} \mathrm{H}$ NM R [($\left.\mathrm{CD}_{3}\right)_{2} \mathrm{CO} 0$ $\delta 1.13$ (3H , d, J 7.3), 1.73 (3H , t, J 2.0), $1.87(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.2), 2.15(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.31(3 \mathrm{H}, \mathrm{s}), 2.37(1 \mathrm{H}$, qdd, J 7, 3, 7.2 and 2.8), 2.57 (1 H , br d, J 17.4), 3.21 (1 H , br dd, J 17.4 and 7.2), 6.62-6.81 ($7 \mathrm{H}, \mathrm{m}$) and 7.24 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.5$ and 1.5); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 1.11(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3$), 1.78 ($3 \mathrm{H}, \mathrm{br}$ s), 1.80 (3H, t, J 1.8), 1.91 (3H, d, J 1.5), 2.04 (1H , br d, J 17.8), 2.07 $(3 \mathrm{H}, \mathrm{s}), 2.16(1 \mathrm{H}, \mathrm{qdd}, \mathrm{J} 7,3,6.3$ and 2.7$), 2.62(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, \mathrm{J}$ 17.8 and 6.4), 6.23 (1 H , dd, J 14.0 and 10.8), 6.31 (1 H , br s), $6.33(1 \mathrm{H}, \mathrm{m}), 6.34(\mathrm{H}, \mathrm{m}), 6.37(1 \mathrm{H}, \mathrm{m}), 6.38(1 \mathrm{H}, \mathrm{m}), 6.45$ ($1 \mathrm{H}, \mathrm{br} \mathrm{dd}, \mathrm{J} 14.8$ and 11.2) and 6.83 ($1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 11.2,1.5$); and CD (c 1.3×10^{-5}, dioxane) $\Delta \varepsilon^{20}(\mathrm{~nm}):+1.6(304),+3.0(401)$ and +2.0 (427).

Falconensone B 2: orange microcrystalline powder, $\mathrm{C}_{20} \mathrm{H}_{24}$ $\mathrm{O}_{2}, \mathrm{mp} 196-198^{\circ} \mathrm{C}$; EI-M S m/z (\%) 296.1775 ($\mathrm{M}^{+}, 296.1776$ for $\left.\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2}, 46\right), 253\left[(\mathrm{M}-\mathrm{Ac})^{+}, 8\right] 204(14), 109\left[\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{O}\right)^{+}, 44\right]$ and $43\left[(\mathrm{Ac})^{+}, 100\right] ; \lambda_{\max }(\mathrm{M} \mathrm{eOH}) / \mathrm{nm}(\log \varepsilon) 213$ sh (3.46) 248 (3.59), 299 (3.65), 310 (3.65), 386 sh (4.49), 4.07 (4.58) and 430 (4.47); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1680$ and 1650 (conjugated CO); and ${ }^{1} \mathrm{H} N \mathrm{MR}\left(\mathrm{CDCl}_{3}\right) \delta 1.73(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.86(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.05$ ($3 \mathrm{H}, \mathrm{br}$ s), $2.29(3 \mathrm{H}, \mathrm{s}), 2.39(2 \mathrm{H}, \mathrm{m}), 2.82(2 \mathrm{H}, \mathrm{m}), 6.41-6.48$ $(5 \mathrm{H}, \mathrm{m}), 6.53-6.62(2 \mathrm{H}, \mathrm{m})$ and $7.03(1 \mathrm{H}, \mathrm{brd}, \mathrm{J} 9.2)$.

H ydrogenation of falconensone A 1 with 10% Pd-C

$10 \% \mathrm{Pd}-\mathrm{C}(14 \mathrm{mg})$ was suspended to a solution of falconensone A $1(10 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ and the mixture was stirred at room temperature under a hydrogen atmosphere for 2 h . A fter the catalyst had been filtered off, the filtrate was evaporated in vacuo. The residue was purified by LPLC using the solvent system of benzene-acetone ($5: 1$) followed by repeated HPLC [hexane-acetone ($10: 1$) and/or benzene-acetone ($40: 1$)] to afford decahydrofalconensone A $3(7 \mathrm{mg})$.

Decahydrofalconensone A 3: colourless amorphous powder; $[a]_{35}^{20}-33$ (c $0.52, \mathrm{M} \mathrm{eOH}$); El-M S m/z (\%) $320.2710\left(\mathrm{M}^{+}\right.$, 320.2713 for $\left.\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{2}, 13\right), 305\left[(\mathrm{M}-\mathrm{Me})^{+}\right.$, 2] 277 [(M - Ac) $\left.{ }^{+}, 2\right], 249(16), 151(84)$ and 124 (100); $\lambda_{\text {max }}(\mathrm{M} \mathrm{OOH}) /$ $\mathrm{nm}\left(\log\right.$ e) 239 (4.10) and 301 (1.91); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1710$ $(\mathrm{C}=0)$ and 1680 (conjugated $\mathrm{C}=0$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.79$ (3H, d, J 6.4, 11-M e), 1.01 (3H , d, J 7.0, 3-M e), 1.09 (3H , d, J 7.3, 4'-M e), 1.12-1.30 (13H , m), 1.57 (1H , m, 4-H), 1.61 (3H , br
s, 2'-M e), 1.68 ($1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}$), 2.02 (1 H, br d, J 18.0, $5^{\prime}-\mathrm{H}$), 2.06 [$3 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{3}(\mathrm{Me})$], 2.16 (1 H , dd, J 13.3 and 9.0, 12-H), 2.28 ($1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}$), $2.30\left(1 \mathrm{H}, \mathrm{br} \mathrm{dq}, \mathrm{J} 7.3\right.$ and $\left.6.0,4^{\prime}-\mathrm{H}\right), 2.42(1 \mathrm{H}$, qt, J $7.0,6.7,3-\mathrm{H}$) and 2.63 (1 H , dd, J 18.0 and $12.0,5^{\prime}-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 8.3$ ($2^{\prime}-\mathrm{Me}$), 16.2 (3-M e), $16.7\left(4^{\prime}-\mathrm{Me}\right.$), 19.7 (11-M e), $27.0\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right), 27.9[\mathrm{C}-1(\mathrm{Me})], 29.4$ $\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 31.9(\mathrm{C}-11), 32.9(\mathrm{C}-4), 37.2$ (C-10), 38.8 (C-12), 38.8 (C-5'), 39.4 (C-4'), 47.2 (C-3), 135.7 (C-2'), 171.3 ($\mathrm{C}-1^{\prime}$), 212.6 ($\mathrm{C}-3^{\prime}$) and 212.9 (C-2); and CD (c 8.8×10^{-5}, dioxane) $\Delta \varepsilon^{20}(\mathrm{~nm})-25.0$ (236) and -0.2 (331).

Synthesis of the p-bromophenylhydrazone of falconensone A 1

p-Bromophenylhydrazinium chloride (400 mg) was added to a solution of sodium acetate (250 mg) in $\mathrm{EtOH}(10 \mathrm{ml})$ followed by a solution of falconensone $\mathrm{A} 1(80 \mathrm{mg})$ in $\mathrm{CHCl}_{3}(5 \mathrm{ml})$ added dropwise. The mixture was warmed at $75^{\circ} \mathrm{C}$ for 2.5 h after which it was poured into ice-water and extracted with CHCl_{3}. The extract was washed with 0.5 m aqueous HCl and then water and then evaporated in vacuo. The residue was purified by LPLC with benzene-acetone $(40: 1)$ and then recrystallized from acetone to afford falconensone A p-bromophenylhydrazone 4 (72 mg).
Falconensone A p-bromophenylhydrazone 4: dark red crystalline powder, $\mathrm{mp} 183^{\circ} \mathrm{C}$; $[\alpha]_{435}^{20}-134\left(\mathrm{C} 0.58, \mathrm{CHCl}_{3}\right)$ (Found: C, 66.88; $\mathrm{H}, 6.86$; N, 5.33. Calc. for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{OBr} \cdot \mathrm{C}_{3} \mathrm{H} \mathrm{C}_{6} \mathrm{O}: \mathrm{C}$, $67.03 ; \mathrm{H}, 6.94 ; \mathrm{N}, 5.21 \%)$ E EI-M S m/z (\%) 478.1358 (M ${ }^{+}$, 478.1336 for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{ON}_{2}{ }^{79} \mathrm{Br}, 16$), $480.1328\left(\mathrm{M}^{+}, 480.1290\right.$ for $\left.\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{ON} \mathrm{N}^{81} \mathrm{Br}, 15\right), 463,461\left[(\mathrm{M}-\mathrm{M} \mathrm{e})^{+}, 6\right], 173\left[{ }^{81} \mathrm{BrC}_{6} \mathrm{H}_{5}{ }^{-}\right.$ $\left.\mathrm{NH}_{2}\right)^{+}$, 92] and $171\left[{ }^{79} \mathrm{BrC}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right)^{+}$, 98]; $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm}(\mathrm{log}$ ع) 228 (4.43), 274 (4.29) and $440(4.72) ; v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3320$ (NH) and 1670 (conjugated $\mathrm{C}=0$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.21$ (3H, d, J 7.4), 1.79 (3H, br s), 2.03 (3H, s), 2.13 (3H, s), 2.15 ($3 \mathrm{H}, \mathrm{s}$), 2.44 (1 H , br qd, J 7.4 and 6.5), 2.47 ($1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 17.1$), 3.16 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.1$ and 6.5), 6.30-6.60 (7H , m), 6.77 (1 H , br dd, J 13.5 and 11.0), $7.00(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.9), 7.35(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.9)$ and $7.38(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \mathrm{CD}\left(\mathrm{c} 3.8 \times 10^{-5}\right.$, dioxane) $\Delta \varepsilon^{20}(\mathrm{~nm})+1.2$ (285) and +1.0 (408).

Structure determination of falconensone A p-bromophenylhydrazone 4 acetone solvate by X -ray diffraction

The crystals of falconensone A p-bromophenylhydrazone 4 acetone solvate were grown from acetone as dark red prisms.

Diffraction intensities were collected from a crystal of dimensions $0.50 \times 0.30 \times 0.10 \mathrm{~mm}$ on a Rigaku AFC-7 four-circle diffractometer. Of the total 4238 unique reflections (complete for $2 \theta<120^{\circ}$), 3727 satisfied the criterion $\mathrm{F}>3 \sigma(\mathrm{~F})$ and only these were used in the solution and refinement of the structure

Crystal data. $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{BrN}_{2} \mathrm{O} \cdot \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}, M=537.34$, triclinic, space group P1, a = 11.528(2), b=16.327(1), c=8.427(2) \AA, $a=100.78(1), \beta=106.47(2), \gamma=70.110(8)^{\circ}, V=1423.1(4) \AA^{3}$, $Z=2, D_{c}=1.254 \mathrm{~g} \mathrm{~cm}^{-3}, \mathrm{~F}(000)=564, \mathrm{Cu}-\mathrm{K} \alpha \mathrm{X}$-radiation (graphite monochromator) and $\lambda=1.54178 \AA$.

The structure was solved by direct methods using SA PI 91^{6} and expanded using Fourier techniques (DIRDIF 927). The final refinement was done by the full-matrix least-squares method. A nisotropic thermal parameters were used for all nonhydrogen atoms and the hydrogen atoms were fixed. The refinement converged to $R\left(R_{w}\right) 0.047$ (0.040). ${ }^{5}$
Absolute structure determination of falconensone A p-bromophenylhydrazone 4 acetone solvate. The absolute structure was determined by comparison of the observed intensity ratios of the Bijvoet pairs with those of the calculated ones. The results were incorrect when the initial structure was chosen. M oreover, the $R\left(R_{w}\right)$ value was 5.5 (4.9)\% after a least-squares calculation was done for 7369 reflections when the initial structure was chosen, but this value was reduced to 5.2 (4.5)\% when the antipodal (correct) structure was chosen.

A cknowledgements

We thank Prof. M akoto Miyaji of the Research Center for Pathogenic Fungi and M icrobial Toxicoses, Chiba U niversity, and Dr Shun-ichi Udagawa of Tokyo University of A griculture, for their kind advice. We are grateful to M rs T. Ogata

M rs Y. K awada and Mr H. Komiya of Hoshi U niversity for elemental analysis and NMR and mass measurements. This work was supported in part by a Grant-in-A id for Scientific Research (N .0 . 07672296) from the M inistry of Education, Science, Sport and Culture, Japan.

R eferences

1 T. Itabashi, K. N ozawa, M. M iyaji, S. U dagawa, S. N akajima and K. K awai, C hem. P harm. Bull., 1992, 40, 3142.

2 T. Itabashi, N. Ogasawara, K . N ozawa and K . K awai, C hem. P harm. Bull., 1996, 44, 2213.
3 T. Itabashi, K . N ozawa, S. N akajima and K . K awai, C hem. Pharm. Bull., 1993, 41, 2040.
4 Y. H orie, M. M iyaji, K . N ishimura and S. U dagawa, Trans. M ycol. Soc. J pn., 1989, 30, 257.
5 Lists of atomic parameters, bond lengths and bond angles are available on request from the Cambridge Crystallographic Data Centre. Requests for such data should be accompanied by a full bibliographic reference for this work together with the reference number 207/130. \dagger
6 F. Hai-Fu, Structure A nalysis Programs with Intelligent Control, R igaku Corporation, Tokyo, Japan (1991).
7 P. T. Beurkens, G. A dmiraal, G. Beurkens, W. P. Bosman, S. Garcia-G randa, R. O. Gould, J. M. M. Smits and C. Smykalla, The DIR DIF program system, Technical Report of the Crystallography L aboratory, U niversity of N ijmegan, The N etherlands (1992)
\dagger For details of these schemes, see Instructions for Authors (1997), J. Chem. Soc., Perkin Trans. 1, 1997, I ssue 1.

Paper 7/01277B
Received 24th February 1997
A ccepted 3rd J une 1997

